The D-boussinesq Equation: Hamiltonian and Symplectic Structures; Noether and Inverse Noether Operators

نویسنده

  • A. VERBOVETSKY
چکیده

Using new methods of analysis of integrable systems,based on a general geometric approach to nonlinear PDE,we discuss the Dispersionless Boussinesq Equation, which is equivalent to the Benney-Lax equation,being a system of equations of hydrodynamical type. The results include: a description of local and nonlocal Hamiltonian and symplectic structures, hierarchies of symmetries, hierarchies of conservation laws, recursion operators for symmetries and generating functions of conservation laws. Highly interesting are the appearences of the Noether and Inverse Noether operators ,leading to multiple infinite hierarchies of these operators as well as recursion operators.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Hamiltonian Flows on Euler-type Equations

Properties of Hamiltonian symmetry flows on hyperbolic Euler-type equations are analyzed. Their Lagrangian densities are demonstrated to supply the Hamiltonian operators for subalgebras of their Noether symmetries, while substitutions between Euler-type equations define Miura transformations between the symmetry flows; some Miura maps for Liouvillean Euler-type systems are supplied by their int...

متن کامل

A Geometric Study of the Dispersionless Boussinesq Type Equation

We discuss the dispersionless Boussinesq type equation, which is equivalent to the Benney–Lax equation, being a system of equations of hydrodynamical type. This equation was discussed in [4]. The results include: A description of local and nonlocal Hamiltonian and symplectic structures, hierarchies of symmetries, hierarchies of conservation laws, recursion operators for symmetries and generatin...

متن کامل

Noether Symmetries and Integrability in Time-dependent Hamiltonian Mechanics

We consider Noether symmetries within Hamiltonian setting as transformations that preserve Poincaré–Cartan form, i.e., as symmetries of characteristic line bundles of nondegenerate 1-forms. In the case when the Poincaré–Cartan form is contact, the explicit expression for the symmetries in the inverse Noether theorem is given. As examples, we consider natural mechanical systems, in particular th...

متن کامل

First Integrals for Two Linearly Coupled Nonlinear Duffing Oscillators

We investigate Noether and partial Noether operators of point type corresponding to a Lagrangian and a partial Lagrangian for a system of two linearly coupled nonlinear Duffing oscillators. Then, the first integrals with respect to Noether and partial Noether operators of point type are obtained explicitly by utilizing Noether and partial Noether theorems for the system under consideration. Mor...

متن کامل

Noether Symmetry in f(T) Theory at the anisotropic universe

As it is well known, symmetry plays a crucial role in the theoretical physics. On other hand, the Noether symmetry is a useful procedure to select models motivated at a fundamental level, and to discover the exact solution to the given lagrangian. In this work, Noether symmetry in f(T) theory on a spatially homogeneous and anisotropic Bianchi type I universe is considered. We discuss the Lagran...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005